snow

This hashtag in English

Last updated 17w.

Snow comprises individual ice crystals that grow while suspended in the atmosphere—usually within clouds—and then fall, accumulating on the ground where they undergo further changes. It consists of frozen crystalline water throughout its life cycle, starting when, under suitable conditions, the ice crystals form in the atmosphere, increase to millimeter size, precipitate and accumulate on surfaces, then metamorphose in place, and ultimately melt, slide or sublimate away.

Snowstorms organize and develop by feeding on sources of atmospheric moisture and cold air. Snowflakes nucleate around particles in the atmosphere by attracting supercooled water droplets, which freeze in hexagonal-shaped crystals. Snowflakes take on a variety of shapes, basic among these are platelets, needles, columns and rime. As snow accumulates into a snowpack, it may blow into drifts. Over time, accumulated snow metamorphoses, by sintering, sublimation and freeze-thaw. Where the climate is cold enough for year-to-year accumulation, a glacier may form. Otherwise, snow typically melts seasonally, causing runoff into streams and rivers and recharging groundwater.

Major snow-prone areas include the polar regions, the northernmost half of the Northern Hemisphere and mountainous regions worldwide with sufficient moisture and cold temperatures. In the Southern Hemisphere, snow is confined primarily to mountainous areas, apart from Antarctica.

Snow affects such human activities as transportation: creating the need for keeping roadways, wings, and windows clear; agriculture: providing water to crops and safeguarding livestock; sports such as skiing, snowboarding, and snowmachine travel; and warfare. Snow affects ecosystems, as well, by providing an insulating layer during winter under which plants and animals are able to survive the cold.

Snow develops in clouds that themselves are part of a larger weather system. The physics of snow crystal development in clouds results from a complex set of variables that include moisture content and temperatures. The resulting shapes of the falling and fallen crystals can be classified into a number of basic shapes and combinations thereof. Occasionally, some plate-like, dendritic and stellar-shaped snowflakes can form under clear sky with a very cold temperature inversion present.

Snow clouds usually occur in the context of larger weather systems, the most important of which is the low-pressure area, which typically incorporate warm and cold fronts as part of their circulation. Two additional and locally productive sources of snow are lake-effect (also sea-effect) storms and elevation effects, especially in mountains.

Mid-latitude cyclones are low-pressure areas which are capable of producing anything from cloudiness and mild snow storms to heavy blizzards. During a hemisphere's fall, winter, and spring, the atmosphere over continents can be cold enough through the depth of the troposphere to cause snowfall. In the Northern Hemisphere, the northern side of the low-pressure area produces the most snow. For the southern mid-latitudes, the side of a cyclone that produces the most snow is the southern side.

A cold front, the leading edge of a cooler mass of air, can produce frontal snowsqualls—an intense frontal convective line (similar to a rainband), when temperature is near freezing at the surface. The strong convection that develops has enough moisture to produce whiteout conditions at places which the line passes over as the wind causes intense blowing snow. This type of snowsquall generally lasts less than 30 minutes at any point along its path, but the motion of the line can cover large distances. Frontal squalls may form a short distance ahead of the surface cold front or behind the cold front where there may be a deepening low-pressure system or a series of trough lines which act similar to a traditional cold frontal passage. In situations where squalls develop post-frontally, it is not unusual to have two or three linear squall bands pass in rapid succession separated only by 25 miles (40 kilometers), with each passing the same point roughly 30 minutes apart. In cases where there is a large amount of vertical growth and mixing, the squall may develop embedded cumulonimbus clouds resulting in lightning and thunder which is dubbed thundersnow.

A warm front can produce snow for a period as warm, moist air overrides below-freezing air and creates precipitation at the boundary. Often, snow transitions to rain in the warm sector behind the front.

Lake-effect snow is produced during cooler atmospheric conditions when a cold air mass moves across long expanses of warmer lake water, warming the lower layer of air which picks up water vapor from the lake, rises up through the colder air above, freezes, and is deposited on the leeward (downwind) shores.

The same effect occurring over bodies of salt water is termed ocean-effect or bay-effect snow. The effect is enhanced when the moving air mass is uplifted by the orographic influence of higher elevations on the downwind shores. This uplifting can produce narrow but very intense bands of precipitation which may deposit at a rate of many inches of snow each hour, often resulting in a large amount of total snowfall.

The areas affected by lake-effect snow are called snowbelts. These include areas east of the Great Lakes, the west coasts of northern Japan, the Kamchatka Peninsula in Russia, and areas near the Great Salt Lake, Black Sea, Caspian Sea, Baltic Sea, and parts of the northern Atlantic Ocean.

Orographic or relief snowfall is created when moist air is forced up the windward side of mountain ranges by a large-scale wind flow. The lifting of moist air up the side of a mountain range results in adiabatic cooling, and ultimately condensation and precipitation. Moisture is gradually removed from the air by this process, leaving drier and warmer air on the descending, or leeward, side. The resulting enhanced snowfall, along with the decrease in temperature with elevation, combine to increase snow depth and seasonal persistence of snowpack in snow-prone areas.

Mountain waves have also been found to help enhance precipitation amounts downwind of mountain ranges by enhancing the lift needed for condensation and precipitation.

A snowflake consists of roughly 1019 water molecules which are added to its core at different rates and in different patterns depending on the changing temperature and humidity within the atmosphere that the snowflake falls through on its way to the ground. As a result, snowflakes differ from each other though they follow similar patterns.

Snow crystals form when tiny supercooled cloud droplets (about 10 μm in diameter) freeze. These droplets are able to remain liquid at temperatures lower than −18 °C (0 °F), because to freeze, a few molecules in the droplet need to get together by chance to form an arrangement similar to that in an ice lattice. The droplet freezes around this "nucleus". In warmer clouds, an aerosol particle or "ice nucleus" must be present in (or in contact with) the droplet to act as a nucleus. Ice nuclei are very rare compared to cloud condensation nuclei on which liquid droplets form. Clays, desert dust, and biological particles can be nuclei. Artificial nuclei include particles of silver iodide and dry ice, and these are used to stimulate precipitation in cloud seeding.

Once a droplet has frozen, it grows in the supersaturated environment—one where air is saturated with respect to ice when the temperature is below the freezing point. The droplet then grows by diffusion of water molecules in the air (vapor) onto the ice crystal surface where they are collected. Because water droplets are so much more numerous than the ice crystals, the crystals are able to grow to hundreds of micrometers or millimeters in size at the expense of the water droplets by the Wegener–Bergeron–Findeisen process. These large crystals are an efficient source of precipitation, since they fall through the atmosphere due to their mass, and may collide and stick together in clusters, or aggregates. These aggregates are snowflakes, and are usually the type of ice particle that falls to the ground. Although the ice is clear, scattering of light by the crystal facets and hollows/imperfections mean that the crystals often appear white in color due to diffuse reflection of the whole spectrum of light by the small ice particles.

Micrography of thousands of snowflakes from 1885 onward, starting with Wilson Alwyn Bentley, revealed the wide diversity of snowflakes within a classifiable set of patterns. Closely matching snow crystals have been observed.

Ukichiro Nakaya developed a crystal morphology diagram, relating crystal shapes to the temperature and moisture conditions under which they formed, which is summarized in the following table.

Dendrites

Hollow prisms

Needles

Solid plates

Dendrites

Solid plates

Prisms

Nakaya discovered that the shape is also a function of whether the prevalent moisture is above or below saturation. Forms below the saturation line trend more towards solid and compact while crystals formed in supersaturated air trend more towards lacy, delicate, and ornate. Many more complex growth patterns also form, which includeside-planes, bullet-rosettes, and planar types, depending on the conditions and ice nuclei. If a crystal has started forming in a column growth regime at around −5 °C (23 °F) and then falls into the warmer plate-like regime, plate or dendritic crystals sprout at the end of the column, producing so called "capped columns".

Magono and Lee devised a classification of freshly formed snow crystals that includes 80 distinct shapes. They documented each with micrographs.

Snow accumulates from a series of snow events, punctuated by freezing and thawing, over areas that are cold enough to retain snow seasonally or perennially. Major snow-prone areas include the Arctic and Antarctic, the Northern Hemisphere, and alpine regions. The liquid equivalent of snowfall may be evaluated using a snow gauge or with a standard rain gauge, adjusted for winter by removal of a funnel and inner cylinder. Both types of gauges melt the accumulated snow and report the amount of water collected. At some automatic weather stations an ultrasonic snow depth sensor may be used to augment the precipitation gauge.

Snow flurry, snow shower, snow storm and blizzard describe snow events of progressively greater duration and intensity. A blizzard is a weather condition involving snow and has varying definitions in different parts of the world. In the United States, a blizzard occurs when two conditions are met for a period of three hours or more: a sustained wind or frequent gusts to 35 miles per hour (56 km/h), and sufficient snow in the air to reduce visibility to less than 0.4 kilometers (0.25 mi). In Canada and the United Kingdom, the criteria are similar. While heavy snowfall often occurs during blizzard conditions, falling snow is not a requirement, as blowing snow can create a ground blizzard.

Snowstorm intensity may be categorized by visibility and depth of accumulation. Snowfall's intensity is determined by visibility, as follows:

The International Classification for Seasonal Snow on the Ground defines "height of new snow" as the depth of freshly fallen snow, in centimeters as measured with a ruler, that accumulated on a snowboard during an observation period of 24 hours, or other observation interval. After the measurement, the snow is cleared from the board and the board is placed flush with the snow surface to provide an accurate measurement at the end of the next interval. Melting, compacting, blowing and drifting contribute to the difficulty of measuring snowfall.

Glaciers with their permanent snowpacks cover about 10% of the earth's surface, while seasonal snow covers about nine percent, mostly in the Northern Hemisphere, where seasonal snow covers about 40 million square kilometres (15×10^6 sq mi), according to a 1987 estimate. A 2007 estimate of snow cover over the Northern Hemisphere suggested that, on average, snow cover ranges from a minimum extent of 2 million square kilometres (0.77×10^6 sq mi) each August to a maximum extent of 45 million square kilometres (17×10^6 sq mi) each January or nearly half of the land surface in that hemisphere. A study of Northern Hemisphere snow cover extent for the period 1972–2006 suggests a reduction of 0.5 million square kilometres (0.19×10^6 sq mi) over the 35-year period.

The following are world records regarding snowfall and snowflakes:

After deposition, snow progresses on one of two paths that determine its fate, either ablation (mostly by melting) or transitioning from firn (multi-year snow) into glacier ice. During this transition, snow "is a highly porous, sintered material made up of a continuous ice structure and a continuously connected pore space, forming together the snow microstructure". Almost always near its melting temperature, a snowpack is continually transforming these properties in a process, known as metamorphism, wherein all three phases of water may coexist, including liquid water partially filling the pore space. Starting as a powdery deposition, snow becomes more granular when it begins to compact under its own weight, be blown by the wind, sinter particles together and commence the cycle of melting and refreezing. Water vapor plays a role as it deposits ice crystals, known as hoar frost, during cold, still conditions.

Over the course of time, a snowpack may settle under its own weight until its density is approximately 30% of water. Increases in density above this initial compression occur primarily by melting and refreezing, caused by temperatures above freezing or by direct solar radiation. In colder climates, snow lies on the ground all winter. By late spring, snow densities typically reach a maximum of 50% of water. Snow that persists into summer evolves into névé, granular snow, which has been partially melted, refrozen and compacted. Névé has a minimum density of 500 kilograms per cubic metre (31 lb/cu ft), which is roughly half of the density of liquid water.

Firn is snow that has persisted for multiple years and has been recrystallized into a substance denser than névé, yet less dense and hard than glacial ice. Firn resembles caked sugar and is very resistant to shovelling. Its density generally ranges from 550 kilograms per cubic metre (34 lb/cu ft) to 830 kilograms per cubic metre (52 lb/cu ft), and it can often be found underneath the snow that accumulates at the head of a glacier. The minimum altitude that firn accumulates on a glacier is called the firn limit, firn line or snowline.

There are four main mechanisms for movement of deposited snow: drifting of unsintered snow, avalanches of accumulated snow on steep slopes, snowmelt during thaw conditions, and the movement of glaciers after snow has persisted for multiple years and metamorphosed into glacier ice.

When powdery, snow drifts with the wind from the location where it originally fell, forming deposits with a depth of several meters in isolated locations. After attaching to hillsides, blown snow can evolve into a snow slab, which is an avalanche hazard on steep slopes.

An avalanche (also called a snowslide or snowslip) is a rapid flow of snow down a sloping surface. Avalanches are typically triggered in a starting zone from a mechanical failure in the snowpack (slab avalanche) when the forces on the snow exceed its strength but sometimes only with gradually widening (loose snow avalanche). After initiation, avalanches usually accelerate rapidly and grow in mass and volume as they entrain more snow. If the avalanche moves fast enough some of the snow may mix with the air forming a powder snow avalanche, which is a type of gravity current. They occur in three major mechanisms:

Many rivers originating in mountainous or high-latitude regions receive a significant portion of their flow from snowmelt. This often makes the river's flow highly seasonal resulting in periodic flooding during the spring months and at least in dry mountainous regions like the mountain West of the US or most of Iran and Afghanistan, very low flow for the rest of the year. In contrast, if much of the melt is from glaciated or nearly glaciated areas, the melt continues through the warm season, with peak flows occurring in mid to late summer.

Glaciers form where the accumulation of snow and ice exceeds ablation. The area in which an alpine glacier forms is called a cirque (corrie or cwm), a typically armchair-shaped geological feature, which collects snow and where the snowpack compacts under the weight of successive layers of accumulating snow, forming névé. Further crushing of the individual snow crystals and reduction of entrapped air in the snow turns it into glacial ice. This glacial ice will fill the cirque until it overflows through a geological weakness or an escape route, such as the gap between two mountains. When the mass of snow and ice is sufficiently thick, it begins to move due to a combination of surface slope, gravity and pressure. On steeper slopes, this can occur with as little as 15 m (50 ft) of snow-ice.

Scientists study snow at a wide variety of scales that include the physics of chemical bonds and clouds; the distribution, accumulation, metamorphosis, and ablation of snowpacks; and the contribution of snowmelt to river hydraulics and ground hydrology. In doing so, they employ a variety of instruments to observe and measure the phenomena studied. Their findings contribute to knowledge applied by engineers, who adapt vehicles and structures to snow, by agronomists, who address the availability of snowmelt to agriculture, and those, who design equipment for sporting activities on snow. Scientists develop and others employ snow classification systems that describe its physical properties at scales ranging from the individual crystal to the aggregated snowpack. A sub-specialty is avalanches, which are of concern to engineers and outdoors sports people, alike.

Snow science addresses how snow forms, its distribution, and processes affecting how snowpacks change over time. Scientists improve storm forecasting, study global snow cover and its effect on climate, glaciers, and water supplies around the world. The study includes physical properties of the material as it changes, bulk properties of in-place snow packs, and the aggregate properties of regions with snow cover. In doing so, they employ on-the-ground physical measurement techniques to establish ground truth and remote sensing techniques to develop understanding of snow-related processes over large areas.

In the field snow scientists often excavate a snow pit within which to make basic measurements and observations. Observations can describe features caused by wind, water percolation, or snow unloading from trees. Water percolation into a snowpack can create flow fingers and ponding or flow along capillary barriers, which can refreeze into horizontal and vertical solid ice formations within the snowpack. Among the measurements of the properties of snowpacks that the International Classification for Seasonal Snow on the Ground includes are: snow height, snow water equivalent, snow strength, and extent of snow cover. Each has a designation with code and detailed description. The classification extends the prior classifications of Nakaya and his successors to related types of precipitation and are quoted in the following table:

hexagonal or irregular in shape

accretion of supercooled water droplets

or milky glazed surface

supercooled water, size: >5 mm

mostly small spheroids

Graupel or snow pellets encased in thin ice layer (small hail). Size: both 5 mm

needles pointing into the wind

Thin breakable crust forms on snow surface if process continues long enough.

All are formed in cloud, except for rime, which forms on objects exposed to supercooled moisture.

It also has a more extensive classification of deposited snow than those that pertain to airborne snow. The categories include both natural and man-made snow types, descriptions of snow crystals as they metamorphose and melt, the development of hoar frost in the snow pack and the formation of ice therein. Each such layer of a snowpack differs from the adjacent layers by one or more characteristics that describe its microstructure or density, which together define the snow type, and other physical properties. Thus, at any one time, the type and state of the snow forming a layer have to be defined because its physical and mechanical properties depend on them. Physical properties include microstructure, grain size and shape, snow density, liquid water content, and temperature.

Remote sensing of snowpacks with satellites and other platforms typically includes multi-spectral collection of imagery. Multi-faceted interpretation of the data obtained allows inferences about what is observed. The science behind these remote observations has been verified with ground-truth studies of the actual conditions.

Satellite observations record a decrease in snow-covered areas since the 1960s, when satellite observations began. In some regions such as China, a trend of increasing snow cover was observed from 1978 to 2006. These changes are attributed to global climate change, which may lead to earlier melting and less coverage area. However, in some areas there may be an increase in snow depth because of higher temperatures for latitudes north of 40°. For the Northern Hemisphere as a whole the mean monthly snow-cover extent has been decreasing by 1.3% per decade.

The most frequently used methods to map and measure snow extent, snow depth and snow water equivalent employ multiple inputs on the visible–infrared spectrum to deduce the presence and properties of snow. The National Snow and Ice Data Center (NSIDC) uses the reflectance of visible and infrared radiation to calculate a normalized difference snow index, which is a ratio of radiation parameters that can distinguish between clouds and snow. Other researchers have developed decision trees, employing the available data to make more accurate assessments. One challenge to this assessment is where snow cover is patchy, for example during periods of accumulation or ablation and also in forested areas. Cloud cover inhibits optical sensing of surface reflectance, which has led to other methods for estimating ground conditions underneath clouds. For hydrological models, it is important to have continuous information about the snow cover. Passive microwave sensors are especially valuable for temporal and spatial continuity because they can map the surface beneath clouds and in darkness. When combined with reflective measurements, passive microwave sensing greatly extends the inferences possible about the snowpack.

Snow science often leads to predictive models that include snow deposition, snow melt, and snow hydrology—elements of the Earth's water cycle—which help describe global climate change.

Global climate change models (GCMs) incorporate snow as a factor in their calculations. Some important aspects of snow cover include its albedo (reflectivity of incident radiation, including light) and insulating qualities, which slow the rate of seasonal melting of sea ice. As of 2011, the melt phase of GCM snow models were thought to perform poorly in regions with complex factors that regulate snow melt, such as vegetation cover and terrain. These models typically derive snow water equivalent (SWE) in some manner from satellite observations of snow cover. The International Classification for Seasonal Snow on the Ground defines SWE as "the depth of water that would result if the mass of snow melted completely".

Given the importance of snowmelt to agriculture, hydrological runoff models that include snow in their predictions address the phases of accumulating snowpack, melting processes, and distribution of the meltwater through stream networks and into the groundwater. Key to describing the melting processes are solar heat flux, ambient temperature, wind, and precipitation. Initial snowmelt models used a degree-day approach that emphasized the temperature difference between the air and the snowpack to compute snow water equivalent, SWE. More recent models use an energy balance approach that take into account the following factors to compute Qm, the energy available for melt. This requires measurement of an array of snowpack and environmental factors to compute six heat flow mechanisms that contribute to Qm.

Snow affects human activity in four major areas, transportation, agriculture, structures, and sports. Most transportation modes are impeded by snow on the travel surface. Agriculture often relies on snow as a source of seasonal moisture. Structures may fail under snow loads. Humans find a wide variety of recreational activities in snowy landscapes.

Snow affects the rights of way of highways, airfields and railroads. They share a common tool for clearing snow, the snowplow. However, the application is different in each case—whereas roadways employ anti-icing chemicals to prevent bonding of ice, airfields may not; railroads rely on abrasives to enhance traction on tracks.

In the late 20th century, an estimated $2 billion was spent annually in North America on roadway winter maintenance, owing to snow and other winter weather events, according to a 1994 report by Kuemmel. The study surveyed the practices of jurisdictions within 44 US states and nine Canadian provinces. It assessed the policies, practices, and equipment used for winter maintenance. It found similar practices and progress to be prevalent in Europe.

The dominant effect of snow on vehicle contact with the road is diminished friction. This can be improved with the use of snow tires, which have a tread designed to compact snow in a manner that enhances traction. However, the key to maintaining a roadway that can accommodate traffic during and after a snow event is an effective anti-icing program that employs both chemicals and plowing. The FHWA Manual of Practice for an Effective Anti-icing Program emphasizes "anti-icing" procedures that prevent the bonding of snow and ice to the road. Key aspects of the practice include: understanding anti-icing in light of the level of service to be achieved on a given roadway, the climatic conditions to be encountered, and the different roles of deicing, anti-icing, and abrasive materials and applications, and employing anti-icing "toolboxes", one for operations, one for decision-making and another for personnel. The elements to the toolboxes are:

The manual offers matrices that address different types of snow and the rate of snowfall to tailor applications appropriately and efficiently.

Snow fences, constructed upwind of roadways control snow drifting by causing windblown, drifting snow to accumulate in a desired place. They are also used on railways. Additionally, farmers and ranchers use snow fences to create drifts in basins for a ready supply of water in the spring.

In order to keep airports open during winter storms, runways and taxiways require snow removal. Unlike roadways, where chloride chemical treatment is common to prevent snow from bonding to the pavement surface, such chemicals are typically banned from airports because of their strong corrosive effect on aluminum aircraft. Consequently, mechanical brushes are often used to complement the action of snow plows. Given the width of runways on airfields that handle large aircraft, vehicles with large plow blades, an echelon of plow vehicles or rotary snowplows are used to clear snow on runways and taxiways. Terminal aprons may require 6 hectares (15 acres) or more to be cleared.

Properly equipped aircraft are able to fly through snowstorms under instrument flight rules. Prior to takeoff, during snowstorms they require deicing fluid to prevent accumulation and freezing of snow and other precipitation on wings and fuselages, which may compromise the safety of the aircraft and its occupants. In flight, aircraft rely on a variety of mechanisms to avoid rime and other types of icing in clouds, these include pulsing pneumatic boots, electro-thermal areas that generate heat, and fluid deicers that bleed onto the surface.

Railroads have traditionally employed two types of snow plows for clearing track, the wedge plow, which casts snow to both sides, and the rotary snowplow, which is suited for addressing heavy snowfall and casting snow far to one side or the other. Prior to the invention of the rotary snowplow ca. 1865, it required multiple locomotives to drive a wedge plow through deep snow. Subsequent to clearing the track with such plows, a "flanger" is used to clear snow from between the rails that are below the reach of the other types of plow. Where icing may affect the steel-to-steel contact of locomotive wheels on track, abrasives (typically sand) have been used to provide traction on steeper uphills.

Railroads employ snow sheds—structures that cover the track—to prevent the accumulation of heavy snow or avalanches to cover tracks in snowy mountainous areas, such as the Alps and the Rocky Mountains.

Trucks plowing snow on a highway in Missouri

Airport snow-clearing operations include plowing and brushing

Swiss low-profile, train-mounted snowplow

Snow can be compacted to form a snow road and be part of a winter road route for vehicles to access isolated communities or construction projects during the winter. Snow can also be used to provide the supporting structure and surface for a runway, as with the Phoenix Airfield in Antarctica. The snow-compacted runway is designed to withstand approximately 60 wheeled flights of heavy-lift military aircraft a year.

Snowfall can be beneficial to agriculture by serving as a thermal insulator, conserving the heat of the Earth and protecting crops from subfreezing weather. Some agricultural areas depend on an accumulation of snow during winter that will melt gradually in spring, providing water for crop growth, both directly and via runoff through streams and rivers, which supply irrigation canals. The following are examples of rivers that rely on meltwater from glaciers or seasonal snowpack as an important part of their flow on which irrigation depends: the Ganges, many of whose tributaries rise in the Himalayas and which provide much irrigation in northeast India, the Indus River, which rises in Tibet and provides irrigation water to Pakistan from rapidly retreating Tibetan glaciers, and the Colorado River, which receives much of its water from seasonal snowpack in the Rocky Mountains and provides irrigation water to some 4 million acres (1.6 million hectares).

Snow is an important consideration for loads on structures. To address these, European countries employ Eurocode 1: Actions on structures - Part 1-3: General actions - Snow loads. In North America, ASCE Minimum Design Loads for Buildings and Other Structures gives guidance on snow loads. Both standards employ methods that translate maximum expected ground snow loads onto design loads for roofs.

Snow loads and icings are two principal issues for roofs. Snow loads are related to the climate in which a structure is sited. Icings are usually a result of the building or structure generating heat that melts the snow that is on it.

Snow loads – The Minimum Design Loads for Buildings and Other Structures gives guidance on how to translate the following factors into roof snow loads:

It gives tables for ground snow loads by region and a methodology for computing ground snow loads that may vary with elevation from nearby, measured values. The Eurocode 1 uses similar methodologies, starting with ground snow loads that are tabulated for portions of Europe.

Icings – Roofs must also be designed to avoid ice dams, which result from meltwater running under the snow on the roof and freezing at the eave. Ice dams on roofs form when accumulated snow on a sloping roof melts and flows down the roof, under the insulating blanket of snow, until it reaches below freezing temperature air, typically at the eaves. When the meltwater reaches the freezing air, ice accumulates, forming a dam, and snow that melts later cannot drain properly through the dam. Ice dams may result in damaged building materials or in damage or injury when the ice dam falls off or from attempts to remove ice dams. The melting results from heat passing through the roof under the highly insulating layer of snow.

In areas with trees, utility distribution lines on poles are less susceptible to snow loads than they are subject to damage from trees falling on them, felled by heavy, wet snow. Elsewhere, snow can accrete on power lines as "sleeves" of rime ice. Engineers design for such loads, which are measured in kg/m (lb/ft) and power companies have forecasting systems that anticipate types of weather that may cause such accretions. Rime ice may be removed manually or by creating a sufficient short circuit in the affected segment of power lines to melt the accretions.

Snow figures into many winter sports and forms of recreation, including skiing and sledding. Common examples include cross-country skiing, Alpine skiing, snowboarding, snowshoeing, and snowmobiling. The design of the equipment used, typically relies on the bearing strength of snow, as with skis or snowboards and contends with the coefficient of friction of snow to allow sliding, often enhance by ski waxes.

Skiing is by far the largest form of winter recreation. As of 1994, of the estimated 65–75 million skiers worldwide, there were approximately 55 million who engaged in Alpine skiing, the rest engaged in cross-country skiing. Approximately 30 million skiers (of all kinds) were in Europe, 15 million in the US, and 14 million in Japan. As of 1996, there were reportedly 4,500 ski areas, operating 26,000 ski lifts and enjoying 390 million skier visits per year. The preponderant region for downhill skiing was Europe, followed by Japan and the US.

Increasingly, ski resorts are relying on snowmaking, the production of snow by forcing water and pressurized air through a snow gun on ski slopes. Snowmaking is mainly used to supplement natural snow at ski resorts. This allows them to improve the reliability of their snow cover and to extend their ski seasons from late autumn to early spring. The production of snow requires low temperatures. The threshold temperature for snowmaking increases as humidity decreases. Wet-bulb temperature is used as a metric since it takes air temperature and relative humidity into account. Snowmaking is a relatively expensive process in its energy consumption, thereby limiting its use.

Ski wax enhances the ability of a ski or other runner to slide over snow, which depends on both the properties of the snow and the ski to result in an optimum amount of lubrication from melting the snow by friction with the ski—too little and the ski interacts with solid snow crystals, too much and capillary attraction of meltwater retards the ski. Before a ski can slide, it must overcome the maximum value static friction. Kinetic (or dynamic) friction occurs when the ski is moving over the snow.

Snow affects warfare conducted in winter, alpine environments or at high latitudes. The main factors are impaired visibility for acquiring targets during falling snow, enhanced visibility of targets against snowy backgrounds for targeting, and mobility for both mechanized and infantry troops. Snowfall can severely inhibit the logistics of supplying troops, as well. Snow can also provide cover and fortification against small-arms fire. Noted winter warfare campaigns where snow and other factors affected the operations include:

Bivouac of Napoleon's Grande Armée, during the winter retreat from Moscow

Finnish ski troops during the invasion of Finland by the Soviet Union

Army vehicles coping with snow during the Battle of the Bulge of World War II.

Norwegian military preparations during the 2009 Cold Response exercise

Navy SEALs training for winter warfare at Mammoth Mountain, California.

Both plant and animal life endemic to snow-bound areas develop ways to adapt. Among the adaptive mechanisms for plants are dormancy, seasonal dieback, survival of seeds; and for animals are hibernation, insulation, anti-freeze chemistry, storing food, drawing on reserves from within the body, and clustering for mutual heat.

Snow interacts with vegetation in two principal ways, vegetation can influence the deposition and retention of snow and, conversely, the presence of snow can affect the distribution and growth of vegetation. Tree branches, especially of conifers intercept falling snow and prevent accumulation on the ground. Snow suspended in trees ablates more rapidly than that on the ground, owing to its greater exposure to sun and air movement. Trees and other plants can also promote snow retention on the ground, which would otherwise be blown elsewhere or melted by the sun. Snow affects vegetation in several ways, the presence of stored water can promote growth, yet the annual onset of growth is dependent on the departure of the snowpack for those plants that are buried beneath it. Furthermore, avalanches and erosion from snowmelt can scour terrain of vegetation.

Snow supports a wide variety of animals both on the surface and beneath. Many invertebrates thrive in snow, including spiders, wasps, beetles, snow scorpionflys and springtails. Such arthropods are typically active at temperatures down to −5 °C (23 °F). Invertebrates fall into two groups, regarding surviving subfreezing temperatures: freezing resistant and those that avoid freezing because they are freeze-sensitive. The first group may be cold hardy owing to the ability to produce antifreeze agents in their body fluids that allows survival of long exposure to sub-freezing conditions. Some organisms fast during the winter, which expels freezing-sensitive contents from their digestive tracts. The ability to survive the absence of oxygen in ice is an additional survival mechanism.

Small vertebrates are active beneath the snow. Among vertebrates, alpine salamanders are active in snow at temperatures as low as −8 °C (18 °F); they burrow to the surface in springtime and lay their eggs in melt ponds. Among mammals, those that remain active are typically smaller than 250 grams (8.8 oz). Omnivores are more likely to enter a torpor or be hibernators, whereas herbivores are more likely to maintain food caches beneath the snow. Voles store up to 3 kilograms (6.6 lb) of food and pikas up to 20 kilograms (44 lb). Voles also huddle in communal nests to benefit from one another's warmth. On the surface, wolves, coyotes, foxes, lynx, and weasels rely on these subsurface dwellers for food and often dive into the snowpack to find them.

Extraterrestrial "snow" includes water-based precipitation, but also precipitation of other compounds prevalent on other planets and moons in the Solar System. Examples are:

Lexicon

Notable snow events

Recreation

Related concepts

Science and scientists

Snow structures

That footwork on snow 😍❄️ #WRC Watch all WRC full onboards from all stages of #RallyeMonteCarlo on…
1080
A rain-on-snow event created some interesting shapes and textures in the backcountry of @MountRainierNPS in…
762
【お知らせ】 ●SixTONES Snow Man 1st Anniversaryグッズ システム障害により一時ご購入できない状況となっておりましたが、現在は復旧し、ご購入いただけ…
941
あすのめざましテレビ気になる人がいたらRT♪ 岩田剛典 ▽新田真剣佑 ▽歌広場淳 ▽NiziU ▽目黒蓮(Snow Man) ▽佐々木希 ▽ミルクボーイ ▽ミキ ▽田中将大 ▽一山麻緒 ▽久保建英 ▽高畑充希 ▽戸次重幸 ▽内田珠…
4236
Hurting my back last week was terrible. Getting out of shoveling 2ft of snow this week is less terrible. 🤣
0
RT @J_islandstore: 【お知らせ】 ●SixTONES Snow Man 1st Anniversaryグッズ システム障害により一時ご購入できない状況となっておりましたが、現在は復旧し、ご購入いただけます。 お…
941
Why are people on TikTok saying snow flower was a love song of him and his significant other 💀💀. I thought he wrote…
0
悠太くんデビューしようね!!!(違う違う)
0
RT @UmiSnowManUmi: 💜:.。..。.:💜:.。..。.:💜:.。..。.:💜   Snow Man Grandeur    Big Bang Sweet  ナミダの海を越えて行け EVERYTHING IS EVERYTHING  カップリング曲も最高です…
1
RT @cinemalife_web: 木村拓哉×Snow Man・目黒蓮&向井康二のラジオ対談が実現 / この1年で感じたファンへの思いや、目黒蓮が木村拓哉と共演したドラマ『教場II』の出演秘話など \ ▶ #木村拓哉 #…
14
RT @maburusnow: @maburunyan 今日もLD.D.Kを食べる🍫 TLに流れてくる🏝️📺のSnow Man見てます😍 ありがとうございます✨
1
めざましのめめはナニゴト!!?? ISLAND TVはサバ落ち気味だしパニックパニック!!
0
Snow in West Springfield! @capitalweather
0
Good Sunday morning all! Who’s ready? @fox5dc #snow #weekendwarriors @MaureenUmehFox5 @FitzFox5DC @MRotellaWx…
0
今日 ISLANDTV終了なんだ( ߹꒳߹ ) 楽しい動画をいつもありがとうございました!!!(♡ᴗ͈ˬᴗ͈)⁾⁾⁾ さて!新しいコンテンツを!! 公式Twitterでもいいよ!! 公式Instagramでもいいよ!! #SnowMan
0
RT @furqaan_farooq: Snow city Kashmir
35
いつまで私に執着する気なんだろ私もう彼氏いるよ、、、(結構辛いけど)(元彼より全然まし)
0
RT @cx_mezamashi: あすのめざましテレビ気になる人がいたらRT♪ 岩田剛典 ▽新田真剣佑 ▽歌広場淳 ▽NiziU ▽目黒蓮(Snow Man) ▽佐々木希 ▽ミルクボーイ ▽ミキ ▽田中将大 ▽一山麻緒 ▽久保建英 ▽高畑充希 ▽戸次重幸 ▽内田珠鈴 ▽花音…
413
RT @cx_mezamashi: あすのめざましテレビ気になる人がいたらRT♪ 岩田剛典 ▽新田真剣佑 ▽歌広場淳 ▽NiziU ▽目黒蓮(Snow Man) ▽佐々木希 ▽ミルクボーイ ▽ミキ ▽田中将大 ▽一山麻緒 ▽久保建英 ▽高畑充希 ▽戸次重幸 ▽内田珠鈴 ▽花音…
413
Fire emblem three houses rants thread I have played silver snow and crimson flower, currently playing azure moon SPOILERS
0
RT @yukimikan9831: ふかさくの生歌ーーー!!! テンション爆上がりした!!! Snow Man「Grandeur」1/20発売d(D.D.*)
32
「Snow Man」 #ISLANDTV
23452
❄️🐼 Slides, somersaults and pure panda joy. Happy snow day from giant pandas Mei Xiang and Tian Tian! 🌨🐾 . . .…
46137
The Giant Pandas at the @NationalZoo are enjoying DC's snow storm. The video shows slides, somersaults and pure pan…
11686
RT @NationalZoo: ❄️🐼 Slides, somersaults and pure panda joy. Happy snow day from giant pandas Mei Xiang and Tian Tian! 🌨🐾 . . . #SnowDay #…
1069
ジャニーズJr.の動画サイトで見せてきた「素の姿」 Snow ManとSixTONES、「ISLAND TV」卒業までの軌跡(J-CAST ...
0
RT @oricon: Snow Man目黒蓮、単独で初ブランドイメージキャラクター就任 『ヴィートメン』の顔に起用 #SnowMan #目黒蓮 #ジャニーズ #CM #めめ #ヴィートメン
1495
RT @gtastk8: @snow_gray_ やっと全国放送されて和歌山県民嬉しいです🙌県内では度々放送されてるんですがね。あの時は検査も大阪府にも頼んだり、頼れるもんは全て頼んでましたね。「病院をダイヤモンドプリンセスにしてはいけない」が印象に残っています。
14
RT @oricon: Snow Man目黒蓮、単独で初ブランドイメージキャラクター就任 『ヴィートメン』の顔に起用 #SnowMan #目黒蓮 #ジャニーズ #CM #めめ #ヴィートメン
1495
RT @Spalooncooties: this gif has been playing on loop in my brain for 8 uninturrupted hours
3748
@danholley_ @NNweather Been about 60/40 snow/rain mix, turned to light snow 30 mins ago. Jan's snow falling days totting up nicely now 😁
0
RT @oricon: Snow Man目黒蓮、単独で初ブランドイメージキャラクター就任 『ヴィートメン』の顔に起用 #SnowMan #目黒蓮 #ジャニーズ #CM #めめ #ヴィートメン
1495
Like how I have some friends who are sledding in snow right now and then Lucy and I are sunbathing at the bayou
0
@skomimaster Rain with temperatures slightly above 0c is horrid 😪 I hope you get snow soon Milos! ❄❄❄
0
RT @NationalZoo: ❄️🐼 Slides, somersaults and pure panda joy. Happy snow day from giant pandas Mei Xiang and Tian Tian! 🌨🐾 . . . #SnowDay #…
1069
First Dogs enjoying the snow at the White House
0
Today we distributed 400 coats to families during the First Baptist Church coat drive. I’m grateful for Pastor Youn…
0
⁦@LauraJaneGrace⁩ My Against Me! mask kept my face warm in the snow. 😍
0
@honsxxl_myg We got about 4 inches of snow last night/this morning, and my dogs want no part of it. We had to basic…
0
RT @snowman_ssw: Snow Manの「素のまんま」 本日夜9時より放送! ☃️今夜のメンバー☃️ #阿部亮平 #宮舘涼太 の2人です!お聞き逃しなく!  放送中は #素のまんま でツイートして一緒に盛り上がりましょう! #SnowMan
4022
I hate the snow 😤😤
0
ISLAND TVページに[Archived] ページができたジェジェ❗️ SixTONESとSnow Man卒業しちゃったけど… 新しくできた[Archived]ページで 今までの彼らの動画を今後も楽しんでほしいジェジェ🌟
10420
RT @AnilKapoor: The real heroes of India, The Indian Army is conducting the Gulmarg Winter Festival from 06 to 08 Feb 2021. Come & be a par…
37
@brucefranksjr I'm tired of the snow.. 😭😭😭😭😭
0
RT @eiga_natalie: Snow Man主演の映画「滝沢歌舞伎 ZERO 2020」再び特別上映 #滝沢歌舞伎ZERO2020 #SnowMan #IMPACTors #小田将聖 #滝沢秀明
420
RT @TweetsTheWx: It has been snowing for 38 hours straight in New Jersey. Snow began at 10:42am on Sunday in Trenton. It is now Tuesday. Hi…
3
RT @WMount: Unfortunately due to the current snow conditions and the forecast for the day, school will be closed to those students who have…
2
RT @kazu69403860: 会津は☁☃5℃予報。今日は節分。 午後は☃が舞うらしい。 ・・雪降る前に、てくてく散歩道。いい眺め。 皆さん、いい一日過ごしてくなんしょ(^-^) #会津 #会津若松市 #風景写真 #view #散歩道 #冬道 #雪景色 #冬景色 #sn…
6
RT @kazu69403860: 会津は☁☃5℃予報。今日は節分。 午後は☃が舞うらしい。 ・・雪降る前に、てくてく散歩道。いい眺め。 皆さん、いい一日過ごしてくなんしょ(^-^) #会津 #会津若松市 #風景写真 #view #散歩道 #冬道 #雪景色 #冬景色 #sn…
6
RT @dazzlingbitch1: Snow day. findom 🛌 cashmaster ❄️ humanatm
1
RT @wes_midori: 【#SnowMan】 本日大ヒット中の『#Grandeur』初回盤Bが再入荷‼️ 初回盤Aも在庫ありますよ☺️ 完売前にGETしてくださいね👍
1
RT @Sam2Rocco: Snow Man Grandeurをお願いするtos付き #スノMTVワンタッチ です☃️ Please play 'Grandeur’ by Snow Man☃️ Snow ManのGrandeurをかけてください☃️
18
RT @cinematoday: Snow Man主演、映画『滝沢歌舞伎 ZERO』新橋演舞場で期間限定の特別上映! #SnowMan #滝沢歌舞伎ZERO2020 #滝沢歌舞伎ZERO
384
They just got over 10 feet of snow in the Sierras.
0
RT @SenBooker: "Hold onto dreams For if dreams die Life is like a broken-winged bird That cannot fly. Hold fast to dreams For when dreams g…
276
@tharealpopimp Thanks brudda
0
@SNOW___0901 시발 내가 썰지마 쓰느라 손이 얼마나 아팟는데 시발 으이
0
This snow shit is aggy 🤦🏾‍♂️
0
RT @Roal_90: 다 클튜 쓰는데 나만 사이툴 써서 수작업으로 그린 옛날 만화풍
944
Statement from Honey: “I’m very sorry if you heard me barking during mom’s show. I wanted her to throw the ball fo…
4084
stumbled across a local sculptor creating a snow t-rex chasing a snowman away!
16249
@acharya2 @bharathceegee Because it snows like once in a lifetime in Bay Area :) It had snowed a bit on 19th Dec 19…
0
@gorgeousinnie @yngjflwr why on earth is he wearing shorts in the snow i'm freezing by just watching this 😭
0
RT @MetRyan96: February 6th-15th "Cold and wintry Mk3, The Grand Finale" High pressure to the North, low pressure to the South. Well belo…
11
People who drive around with a foot of snow on top of their cars are the same people who wear their mask under their nose
0
RT @TheRoaringKitty: $GME
2635
RT @parkjiminpics: #JIMIN and the snow
3646
RT @parkjiminpics: #JIMIN and the snow
3646
@OnigiriAction1 おはようございます As it is 6 am in Japan But yes the temperatures are pretty similar here to you here at th…
0
RT @TheVaultUncut: Solo Lucci - X tape with his two snow bunnies 🐰
61
i hateeeeeeeee driving in the snow 😠
0
@morteza_snow من خدایی خیلی آرومم ولی دیگه از حد گذروندن
0
@GreenpeaceRO @Greenpeace CARBON METHANE NATURAL GAS NITROUS OXIDE WATER VAPOUR FROM FOSSIL FUEL REPUBLICANS &…
0
RT @kikimatchalatte: wonho made a heart with his snow duckies, can you hear my heart crack
315
RT @tonygucch: Black History Month...Day 2 This is Mike. Mike was the first person to make his wife get off the plane ✈️ and drive through…
1976
@Pswizzle824 Hmm idk since the ages are quite low can u add just normal snow owls or somthing x:)
0
Cleared: Conditions: Snow/Ice: on multiple routes in Warren Co. 4:14PM
0
Update: Conditions: Snow/Ice: on multiple routes in Frederick Co. Potential Delays. 4:14PM
0
@love_synonym301 snow ducks army!🤣
0
An optical illusion for tonight. First you see a man running into the snow ... and then ...
27442
Snow Man、9人全員でレッドカーペット登場 元気いっぱいに「もみあげ手裏剣!」<WEIBO Account Festival in Tokyo 2020> #SnowMan #微博日本群英会 ▼写真・記事詳細はこちら
7166
あすのめざましテレビ気になる人がいたらRT♪ 藤原竜也 ▽竹内涼真 ▽観月ありさ ▽山﨑賢人 ▽Snow Man ▽赤楚衛二 ▽齋藤飛鳥(乃木坂46) ▽吉永小百合 ▽坂本龍一 ▽Eve ▽瀬戸大也 ▽萩野公介 ▽朝比奈彩 ▽フワ…
2924
I hope this snow storm come in so heavy that my professor email me & cancel class🙌🏾
0
RT @sir_nose55: @rico56st Ok, so they are shoveling the snow from their property all the way to the other side of the street and dumping it…
149
RT @almightyogjoeI: Dude saw them puttin snow on his lawn was like
2215
RT @absk_snow_: ZIP! Weibo Account Festival Snow Man 目黒、阿部、中国語スピーチ
4
RT @kar2nwashere1: Ember Snow & Gina Valentina - Latina/Asian pt.7/10
236
RT @SAries401: Okay @lyft @AskLyft @Uber_Support @Uber the snow is melting the price gauging of 3x more the price is crazy!!!! A typical…
1
RT @Ripushko: Old art with Snow White and Aurora. A small redesign for my art was necessary. Too much like baby dolls... #nsfw #Femboy htt…
71
RT @YallLuvCris: Ain’t no way that shooting was over snow on the lawn. Those neighbors were at each other’s necks for a minute before that.…
1
RT @daynavettese: Snow Squall Watches have now been issued for southern Niagara region as well as parts of the Bruce Peninsula and areas ea…
1
RT @PiyushGoyal: A Heavenly Sight: Take a look at the mesmerising view of snow-covered ❄️ rail track in Himachal Pradesh.
1074
RT @almightyogjoeI: Dude saw them puttin snow on his lawn was like
2215
"Wash me and I will be whiter than snow" #ccck
0
RT @Stayschemin78: @rico56st Here’s the story
975
@Artillery_007 @colin_pop Oh yeah just over the snow...whacko for sure. One time incident leading to that...? Nah y…
0
RT @ChrisArnoldInc: I've added Wuthering Heights to this video of a panda sliding around in the snow so I can watch it every morning when I…
3213
RT @NewYork811: IMPORTANT: During and after snowfall, #excavators MUST perform a visual inspection of marks to check they have not been dis…
1
@HelixFn What the actual fuck. All over fucking snow. Snow. This guy shot her point blank multiple times.
0
@DavidHenigUK Snow days are now a thing of the past. If schools closed they switch to on line lessons. ⛄️
0
@tos EVERYTHING IS EVERYTHING is a b-side of the 3rd single "Grandeur". This is a song where you can enjoy each an…
0
RT @rebeccamock: Snow, NYC, Feb 2021
9097
The sun shines above the snow-covered earth/ The traveler listens to the symphony of the frozen Shenandoah River/ T…
0
@AmpliFreQuency @Jordpoole_ @rico56st The fact you’re here isn’t pissing me off in the slightest. Glad you got out…
0
@Beaverloch_Farm Haha I love you took the pic prior to clearing the snow...I would have done the same.
0
Bruhhhh it’s suppose to SNOW FOR LIKE THE NEXT TWO WEEKS please SOUFFFF ME PLEASE!!!
0
RT @guruu_sufi: That video of dude killin the couple in PA cause of the snow dispute is EXACTLY why I don’t fuck w people and keep my peace…
3
Oh this is fantastic. Here I've been all day, hoping for snow tomorrow so we can get tomorrow off as well, only to…
0
@snow_satopon ❆ .。:*゚・.。.:*❅..❆ .。:*゚・.。.:*❅..✲*゚ Snow Man 3rd single 「Grandeur」   Released on Jan 20. REQUEST…
0
Moose Range - Feb 5 10AM: southeast corner,Yarrow south loop to snow bridge done,north loop done.10 degrees Report by Rocky
0
RT @DanRather: “Blossom of snow, may you bloom and grow, bloom and grow forever.” RIP Christopher Plummer. You lit up screen and stage over…
2381
@keith200606 ㅎㅏ 제기랄 제가 업고 뛸게요
0
@JohnWiQ16 They do this with Snow White and Robin Hood too. Reuse drawings.
0
RT @Omaha_SarpyWX: ❄️ Winter Weather Advisory late tonight into Saturday afternoon. About 3" or 4" of snow is expected in Omaha by Saturday…
1
RT @TheJessieWoo: I’m re-watching #RHOA ‘s first season. And my goodness.... I didn’t realize how much I missed Deshawn Snow
17
RT @rebeccamock: Snow, NYC, Feb 2021
9097
1st day of Empire in Finse, Norway. She had no scenes there, but came along just to hang out & not miss any of the…
8593
Snow day!
7475
Snow Man目黒蓮が涙 木村拓哉のラジオで“人生を変えたSMAPの名曲”流す @flowsaaaan #フロウさん ▼記事詳細はこちら
1106
@Raiton94722737 高校に女子一人はすごいですね…?! Snowさんもてる人になってるの?!違いますよ⸜(๑⃙⃘'ᵕ'๑⃙⃘)⸝⋆*
0
@Snow_Nailsmile (っ´>ω<))ω<`)ギュッ💓
0
The second snow of the season grips the Turkish city of Istanbul
0
@hoodprison_tl 私はシュガーくんの夢女なので監獄にグラニュー糖を5kg送りつけました(送り付けるな) チョコをあげるのはお互いの仕事だと思うのでシュガマリシュガのバレンタイン探してます。どこ?????
0
RT @torarelaxtime: Beautiful white world. Have a peaceful and blessed day. #snow #Winterwatch #NaturePhotography #naturelovers #GoodMorning…
72
RT @msroberts0619: “Its millions of solar panels are blanketed in snow and ice and breathless, freezing weather is encouraging its 30,000 w…
420
@ftnkp_ パニパニwwwww お絵描きでも人騙してしまいそうやわwww
0
@realqxmsouth @1719do @babycatjx เจอแล้วๆๆๆ แอพ snow ฟีลเตอร์อันนี้
0
House Cheetah in Fresh Snow
0
Two parcels ordered from @Gymshark on the same day. One due for delivery with @DPDgroup_news which is on route and…
0
RT @BTS_twt: 스노우에 우리 나왔다 #JIMIN #꾹 #SNOW
149413
RT @IImbrunnone: *manifesting a H*nk*r pic in the snow*❄️🙌🏻✨
6
我が家にもSILVER SNOWが届いた(✿´꒳`)ノ°+.* 大事にします💚🧡☃️
0
RT @newson6wxguy: 4:50am: The first bands of snow continue to fill in across E OK. We'll have snows for early-mid AM, a lull from mid-AM to…
2
@rex_snow 凄すぎー😆🙌🏻🙌🏻🙌🏻💕
0
@toppiiisnow @kobe240113 前向きに検討いたしますww
0
明日の晩御飯なににしようかなぁ
0
RT @Toa_day: ˏˋ #PrizeSearch 杯 ˎˊ˗ 🛁⌇シングル 🚽⌇2月14日 🩹⌇21:30 21時半 🧻⌇Amazon 2000円×1 🎐⌇𝐅𝐨𝐥𝐥𝐨𝐰&𝐑𝐓 引用いいねRT2つ @Toa_day @PrizeSearch @Ne3_168…
46
The rest of the year in one paragraph: Pancake day, chocolate eggs, wow the sun’s out it’s like summer!, raining n…
1038
@ConceptualJames That snow is awfully white....
0
Deja Vu Galore (wink) Snow & Snacks LoL #valentinesday2021
0
RT @EagleGoldenHU: @Natali122512 Good morning, Natali. Thank you! Words so true. 10 degrees F. in Austin, Texas, snow to reach 4-8 inches n…
1
@mikefromemphis Made giant snow penis’s during the ice storm on Gram/baylis back in the day
0
RT @TxDOTPharr: For road conditions throughout Texas, go to or call at 1-800-452-9292. The gray area is where snow…
14
RT @cjhfit: JONGHO SNOW APP DISBANDMENT ⁉️
246
@IanShelton1997 @TxStormChasers Can confirm. It's absolutely insane out there. The amount of blowing snow is ridiculous. Complete white out
0
Coors loved the snow 🤍❄️🐾
0
Texas hammered with rarely seen snow and ice
0
Ok so my theory is the world suddenly decided to go cold with all this ice and snow because it knew @theestallion w…
0
so its just me who still doesn’t have any snow
0
@Kim__Snow 그거 아니야..
0
there's no good way to take a photo but the back corner of my room has been relegated to box jenga... LMAO... gonna…
0
RT @sarahlugor: i would like snow a lot more if it wasn’t cold
41
RT @twatson_13: Texas gets one snow day and loses their shit
213
RT @twatson_13: Texas gets one snow day and loses their shit
213
RT @RachelEliseP: I love that no one in Texas owns actual snow clothes. It’ll snow and you’ll see everyone outside in mismatched pajamas an…
3560
RT @_chelleshock: I’m gonna be a buzzkill early and say: don’t be shitty about southern/warmer states dealing with ice/snow/cold this weeke…
4982
Winter in NYC
5
Het was een dag in de winter, de wegen lagen ijzig. Mia en haar broertje Teddy hadden geen school door dit weer. Hierdoor kon de familie eens op een uitje.
24
This Snow Tunnel in Wales would be the perfect way to arrive via sled for your winter wedding (hoping Mother Nature does her job)!
5540
Photo Journal: Winter in Swedish Lapland | The Future Kept
48
@lottedehaann
570
winter
3498
Neulich bin ich kurz nach Mitternacht auf Éva's wunderschönes Winterfenster auf ihrem Blog Emil und die grossen Schwestern gestossen. Eige...
7
La pureté d'un blanc éclatant, aucune tâches sombre sur le tableau ni même a l'horizon.
332
So schön sieht es im Winter im Sauerland aus: Wenn Schnee liegt ist das Sauerland die ideale Region für Wintersport und Ausflüge in den Schnee. Aber auch im Sommer kommen Naturfans hier auf ihre Kosten. Lass Dich inspirieren von unseren Tipps fürs Sauerland! #deinnrw ©️ Tourismus GmbH, Dominik Ketz
286
9 Best Ski Destinations to Visit This Winter - While snow coverage remains spotty out West, Europe is experiencing its deepest winter in decades thanks to a battery of early season storms. #winteroutfit #skioutfits #skiing ##skiseason #bigmountainskiing #ski #snowsports #skiinginspiration #sports #outdoorsadventure #winter #winterwonderland #snow
110
Here's Definitive Proof That New York Is Truly Magical Covered In Winter Snow…
72
Here's Definitive Proof That New York Is Truly Magical Covered In Winter Snow…
143
Winter kann eine so schöne Jahreszeit sein. Mit viel Schnee entsteht solch ein schönes Winterfoto.
476
La pureté d'un blanc éclatant, aucune tâches sombre sur le tableau ni même a l'horizon.
1034
Don’t we always say this every year? I can’t believe that the year is almost over. And that means it’s almost Christmas. I’ve done several posts about Christmas. You can see them here, here, here, here, here and here. However, I told myself a couple of weeks ago that I’d skip it this year. …
333
Modern winter photograph by Alicia Bock. Title: Winter Daydream #3All fine art photographs are printed on Kodak Endura Professional photographic paper with a luster finish for a photograph with sharp details, and stunning colors that will last a lifetime. The Luster paper is a traditional photographic paper with subtle texture, and a slight sheen without being glossy. Please note the colors you see on your monitor may differ slightly from the print due to variations in monitor settings.Custom or
758
Winter in NYC
42
Wanneer het sneeuwt in New York #newyork #winter #citytrip #snow
129
La pureté d'un blanc éclatant, aucune tâches sombre sur le tableau ni même a l'horizon.
134
from Sweet Southern Vintage...
8
Awwww j'adore la neige
89
via @finduslost | Hallstatt, Austria is one of the most picturesque European towns I have ever been to. Stay overnight in this dream destination to avoid the crowds and take full advantage of its stunning scenery in the evenings and early morning. Hallstatt in winter is just as magical with the snow covered rooftops and mist over the mountains. #hallstatt #austria #europeantravel #bucketlisttravel #finduslost
79
Winter iPhone Wallpapers - 28 Cute Winter iPhone Backgrounds [FREE Download] - Even if you are not fond of winter, this collection of winter iPhone wallpaper photos will give you more reasons to like this time of the year! Winter iPhone backgrounds #iphone #iphonewallpaper #winter #christmaslights #snow #background #landscape #photography #nature
18
Here's Definitive Proof That New York Is Truly Magical Covered In Winter Snow…
93
Fun Winter Activities for Kids in NJ - Make a cool Olaf snowman
0
snow Pinterest Ideas
  • snow outfits for women
  • snowman crafts
  • snow
  • snowboarding outfit
  • snow ice cream recipe
  • snowflake craft
  • snow photoshoot
  • snowflake nails
Feb 15, 2021 09:34
Image
Forest...
11
1
Jun 19, 2020 16:34
Image
Malování sjezdovky na plátno, výroba lyžařů. (Na lyže jsme použili dřívka od nanuků). #piste #skiers #snow #preschoolcrafts
2
0
#skiers #snow #preschoolcrafts #piste
Jun 20, 2020 01:40
Image
Valle Nevado ❄️💕. . #followme #talcacity #tongue #hakahonu #likeforfollow #instalca #follow4like #like4like #santiagodechile #snow #Chile #talcachile #talcagram #nieve #blackandwhite #linares #maule #follow4followback #winter #instafollow #santiago #followforfollow #vallenevado #siguemeytesigo #curico #likeforlikes #instatalca #talca
223
0
#likeforlikes #follow4followback #santiago #linares #like4like
Jun 20, 2020 07:48
Image
#instagramhub #nice #bored #all_shots #look #throwback #home #loveit #jj #picstitch #colorful #20likes #shoes #instaphoto #snow #instacollage #harrystyles #boyfriend #niallhoran #statigram #tired #in #followback #instagramers #doubletap #model #nike #dog
1
0
#loveit #instagramhub #shoes #nice #model
Jun 20, 2020 11:07
Image
Mountain View ⛰️ . . . . . Don't forget to follow 😇 . . . . . . #mountain #nature #mountains #landscape #travel #hiking #photography #snow #adventure #naturephotography #trekking #sky #winter #photooftheday #ig #travelphotography #love #landscapephotography #a #outdoor #naturelovers #outdoors #instagood #sunset #photo #picoftheday #explore #climbing #italy #bhfyp
36
2
#travelphotography #hiking #photo #outdoor #landscapephotography
Jun 20, 2020 11:54
Image
تو وجود هر یک از ما کودکی سرزنده و بازیگوش، بالغی پخته و سرد گرم چشیده و والدی نصیحت کننده و سرزنش کننده س، فقط نمیدونم چرا یکم دوز کودک درون من و ایوب قویتره. #کودکِ_درون #هیجان #سفر #زندگی #لحظات_خوش #برف_بازی #تیوب_سواری #سپیدان_فارس #شیراز #مارگون #استان_فارس #بالغ #والد #حس_خوب #travelphotography #snow #winter #sepidan #sepidan_fars #shiraz #travel #iran_tourism #iran #iraniangirl
8
0
#iran_tourism #sepidan_fars #travelphotography #iraniangirl #winter
Jun 20, 2020 11:42
Image
A very happy looking @mattgreen_sfm arriving in Norway earlier this year ready to shoot on the Asnes Expedition Amundsen. The athletes meet in Eidfjord then back country ski race 100km across the Hardangervidda Plateau, pulling their supplies behind them on a sled. The race follows in the footsteps of Roald Amundsen who used the route as his training ground.
9
1
Jun 20, 2020 11:44
Image
Sach mein.... 🤞 . . . . . #instagramhub #nice #bored #all_shots eyes #look #throwback #home #loveit #jj #picstitch #colorful #20likes #shoes #instaphoto #snow #instacollage #harrystyles #boyfriend #niallhoran #statigram #tired #in #followback #instagramers #doubletap #model #nike #dog
5
0
#loveit #harrystyles #bored #look #colorful
Jun 20, 2020 11:45
Image
❤ . . . .. . #instagramhub #nice #bored #all_shots eyes #look #throwback #home #loveit #jj #picstitch #colorful #20likes #shoes #instaphoto #snow #instacollage #harrystyles #boyfriend #niallhoran #statigram #tired #in #followback #instagramers #doubletap #model #nike #dog
4
0
#niallhoran #snow #doubletap #20likes #loveit
Jun 20, 2020 11:45
Image
Sparkly snow in Sapporo, Japan ✨ #mtmoiwaropeway #japan #sapporo #snow #travel #sunlight #travelinspo #sapporojapan
2
0
#travelinspo #sapporojapan #travel #mtmoiwaropeway #japan